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WHICH IS THE BETTER ENTROPY EXPRESSION
FOR SPEECH PROCESSING:

-SLOG S OR LOG S?

INTRODUCTION

Because the power spectrum S(f) of a band-limited stationary process is related to its autocorrela-
tion function R (t) by a Fourier transform, and because it is relatively easy to measure R (t), many
spectral analysis techniques start with values of R (t). If R (t) is known at a set of points or regions,
one class of spectral analysis techniques proceeds by extrapolating R (t) so as to take on reasonable
values in the unknown regions. The extrapolated autocorrelation function is equivalent to a power-
spectrum estimate by a Fourier transform.

Perhaps the best known extrapolation technique is Burg's maximum-entropy spectral analysis
(MESA) [1,2], in which the power spectrum S(f) is estimated by maximizing

rWfO log S (f) df (1)

subject to the constraints

R.R =r(t,) = fW S(f) exp(27rit~f) df, (2)

where W is the bandwidth and where R (t,), r = 1, 2, . .. , M, are known values of the autocorrelation
function. The MESA estimate of S(f) has the well-known all-pole, autoregressive, or linear prediction
form, which can also be derived by various equivalent formulations [3-6]. It has become one of the
most widely used spectral analysis techniques in geophysical data processing [7-91 and speech processing
[4,10].

"Maximum-entropy spectral analysis" is also used in image processing. In that field, however, the
phrase refers not only to successful estimates produced by maximizing (1) [11-13], but also to esti-
mates produced by maximizing [14-161

-JO Ws(f) logS(f) df. (3)

Spectral estimates based on (3) have also been studied for ARMA and meteorological time series
[17,181. Although there is controversy in the image-processing literature about whether (1) or (3)
yields the best estimates [16,191, the success of (3) in image processing raises the question of whether
(3) might also be useful in speech processing. We consider the question in this report and attempt to
answer it. As part of our investigation, we also derive a generalization of the estimate produced by
maximizing (3), one that takes into account a prior estimate of the unknown power spectrum.

Our report is organized as follows: In the next section we review derivations of the forms (1) and
(3), and we discuss theoretical arguments for each of them. We then turn to an empirical comparison.
Our approach is discussed in the third section, and the results are summarized in the fourth section. A
brief general discussion then follows in the concluding section.

Manuscript approved February 14, 1983.
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BACKGROUND

In this section we derive the different spectral estimators that result from maximizing (1) and (3).
We find that they both result from applying a generalized form of the principle of maximum entropy
[20-22], but they differ concerning the quantities that are treated as random variables. In the case of
(1), the underlying random variables are the coefficients of a Fourier-series model, and the spectral
powers S(f) are expected values. In the case of (3), the spectral power S(f)-suitably normalized-is
treated as a probability density, and the underlying random variable is the frequency.

The -log S Form

In deriving MESA, Burg's approach was to extrapolate R (t) in a manner that maximizes the
entropy of the underlying stochastic process [1,2]. This is an application of the principle of maximum
entropy [20-22]. An intuitive justification for such an extrapolation of R () is that it agrees with what
is known-as expressed by the constraints (2) -while being "maximally noncommittal" about what is
not known [20]. In particular, (1) is the entropy gain in a stochastic process that is passed through a
linear filter with characteristic function Y(f), where S(f) = I y(f) 12, as described in Refs. 9 (pp. 412-
414), 23 (pp. 93-95), and 24 (p. 243). If the input process is white noise, then the output process has
spectral power density S(f). This suggests that the process entropy can be maximized by maximizing
the entropy gain of the filter that produces the process. Thus (1) is maximized subject to the con-
straints (2). The result is 2

S (f) = T (4)
If ArZ-r

where z = exp (-27rif At). This is the familiar MESA [2] or linear-prediction-coding (LPC) [4] esti-
mate. The ar are the inverse-filter sample coefficients, and a is the gain. Such derivations of (4) have
several mathematical and logical drawbacks [251. For example, entropy is mathematically ill-behaved
for continuous densities [26, pp.3 1-32]. A derivation of MESA without these drawbacks arises as a spe-
cial case of minimum cross-entropy spectral analysis (MCESA) [251 and also helps to expose the
difference underlying the choice of maximizing (1) or (3).

Like MESA, MCESA is an information-theoretic extrapolation of R (t), but it differs from MESA
in that it accounts for a prior estimate of S(f) (or R (t)). MCESA is based on the principle of
minimum cross-entropy (discrimination information, directed divergence, Kullback-Leibler number,
relative entropy) [27-30]. Cross-entropy minimization estimates an unknown probability density q (x)
from a prior estimate p (x ) and known expected values

f q t(x)g, (x)d = (5)

where r = 0, M The estimate is obtained by minimizing the cross-entropy

H(qp) = Jq(x) logIq|x) Idx (6)

subject to the constraints (5) and

f q(x)dx = 1. (7)

When p (x) is interpreted as a prior estimate, cross-entropy minimization can be viewed as a generaliza-
tion of entropy maximization [281-cross-entropy minimization reduces to entropy maximization when
p(x) is uniform. When p(x) is interpreted as an "invariant measure" as in [30], the two principles can
be viewed as equivalent. In either case, the resulting estimate of qt(x) has the form [27,29,31]
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q(x) = p(x) expl-- (x) (8) 4

where the Or, and X are Lagrangian multipliers determined by (5) and (7). We refer to p (x) as a prior.

In deriving MCESA we consider time-domain signals of the form
N

S(t) = zakcos(2Tfkt) + bksin(2-7fkt) , (9)
k=1

where the ak and bk are random variables and where the fk are nonzero frequencies. Since any station-
ary random process g(t) can be obtained as the limit of a sequence of processes with discrete spectra
[32, p. 36], (9) is quite general. With suitable choices for the frequencies and amplitudes, the mean
square error E([g(t)-s(t)1 2 ) can be made arbitrarily small. Since the power at frequency fk is
xk =_ /2(a 2+bk,), we describe the random process in terms of a joint probability density q(x), where
X = XI, X2, ,., XN

Let SI be the spectral power at frequency fk of some unknown process qt(x):

SI = f xkqt(x) dx. (10)

Furthermore let Pk be a prior estimate of St. As a form for the prior estimate of the probability den-
sity qt, we assume

Nr1
p (X ) = 'SI (11)

k-1I k ePk

This assumption is consistent with the prior spectral-power estimates, since f xkp(x) dx = Pk, and it
is equivalent to a Gaussian prior assumption for the amplitudes ak and bk in (9) [25]. Suppose that
one obtains new information about qt in the form of M + 1 values of the autocorrelation function
R (t,): +N

Rr = R (t,) = I SI exp (27ritrfk)
k=-N
N

= Y2Sfcos (2irtrfk), (12)
k-I

where r = 0, ... , M, and to = 0. Using (10), we write this as

R = 1f2xk COS' (27rtrfk)Jqt(x) dx, (13)

which has the form of expected-value constraints (5). Given the prior (11) and the constraints (13),
one can compute a minimum cross-entropy posterior estimate q (x ) of the form (8). The result can be
written [25] as

q(x) = I + Uklexplp + Uk[Xk, +(14)

where
M

uk = 72,1r cos (27r tfk).
,=o

The Pr are Lagrangian multipliers determined by the constraints (13). The posterior estimate of the
power spectrum is just Sk = J xkq(x) dx, which becomes

Sk = M 1 (15)

_ + 216r cos (2 vtrfk)
Pk r=0

3



JOHNSON AND SHORE

where the Plk are chosen so that the Sk satisfy the autocorrelation constraints
N

Rr = , 2 Sk cos (2 7rtrfk). (16)
k=1

If one assumes a flat prior estimate of the prior spectrum, Pk = P, and equal spacing of the autocorrela-
tion lags, tr = rAt, (15) can be written in the form (4) [251.

From the foregoing we see that the form (4) results from treating the Fourier power variables
xk = 1/2 (a2 + bk2) as random variables and applying cross-entropy minimization to the probability den-
sity q (x). The same results are obtained if one treats the Fourier amplitudes ak and bk themselves as
the random variables [25,33]. To see the relationship between the maximization form (1), the spectral
estimate (4), and the underlying density q(x) more directly, note that the posterior probability density
(14) can be expressed in terms of the posterior spectral-power estimates (15):

N Xk

q(x) = I|-i-exp | (17)

Computing the normalized differential entropy of the posterior power estimates (15) yields

q(x) log q(x) dx = 1 + N z 1og Sk (18)

Except for the constant, which has no effect on maximization, the right-hand side of (18) is the
discrete form of (1). Maximizing (18) subject to the constraints (16) leads again to (4).

The -S log S Form

Results from the preceding subsection show that the MESA or LPC spectral estimate (4) is the
result of applying maximum entropy or minimum cross-entropy with the coefficients of the underlying
Fourier series (9) treated as random variables. In arguing for the maximization of -1k Sk log Sk
rather than Ek log Sk' Skilling [16] points out that the goal is to estimate the power spectrum itself,
not the Fourier amplitudes in an underlying model like (9), so that a more direct and better estimate
should result from treating the unknown power-spectrum variables Si as probabilities. Mathematically
this is reasonable, provided that the power spectrum is normalized so that IkSkt = 1. The difference in
the two approaches is illustrated well by (10). In the first approach, one assumes that the Sit are expec-
tations of an underlying probability density qt(x), and one expresses the known autocorrelations as
expectations of qt(x) as in (13); it follows from the preceding subsection that one should maximize
Yklog Sk. In the second approach, one assumes that the SI are probabilities, and one expresses the
known autocorrelations as expectations of the probability distribution SI, k = 1, ... , N, as in (12)
(we defer for the moment details concerning correct normalization); it follows that maximum entropy
implies the maximization of -k Sk log Sk

In deriving the power spectrum estimate that results from maximizing - Yk Sk log kS we proceed
with the general case involving a prior estimate and cross-entropy minimization as in the previous sub-
section. Since we assumed a known autocorrelation for lag to = 0, IkSl = '12RO is known. Let
q = tq{t, qJ g.. , qNt} and p = {PI, P2, PN} be probability distributions defined by normalizing
the power spectra Si and Pk: t

t~ 25k
qk = R

Pk

Pk = Th

where Pk is a prior estimate of Si/, and where
N

T= FPk
k=I

4
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We rewrite the autocorrelation constraints (12) as expectations of q t:

2R N
r = A 2 cos (2.rrt~fk) qJt. (19)

Then we obtain a posterior estimate of q t by minimizing the cross-entropy

N

H(q,p) = Dqk log -
k=l Pk

subject to the constraints (19). Note that the constraint for r = 0 reduces to the normalization con-
straint Ykqk = 1. The result is

qk Pk exp I-2A r cos (2ir trfk)J, (20)

where the Ar are chosen to satisfy the constraints. We define the posterior power-spectrum estimate as
Sk = 1/2ROqk, which satisfies (12).

We have
N Sk R

ISk log - = I/2 R 0 H(q, p) + I/2 R 0 log T'
k=1 k

where '/2RO and '/2Rolog(RO12T) are constant and '/2RO > 0. It follows that minimizing H(q,p) is
equivalent to minimizing

N S

NaSk log F. (21)
k-1 Tk

Minimizing (21) subject to the constraints (12) yields

Sk = Pk exp [- 2,4, cos (27Ttrfk) (22)

where the Or are chosen to satisfy the constraints. The E, in (22) are equal to the ALr in (20) except for
k0, which satisfies f0o = AO + 'A log (ROd2T).

For a flat prior estimate Pk = P, minimizing (21) is equivalent to maximizing

N

- Sk log Sk,

k-0

which is just the discrete form of (3). Spectral estimates based on the minimization of (21) have been
reported recently in Ref. 34. Also, a first-order approximation of the estimate (22) appears to be
equivalent to the PDFT estimator introduced in Refs. 35 and 36.

Summary

Here we summarize the final results for the two spectral estimates. Both estimates proceed from a
prior estimate Pk and known autocorrelations Rr. When the coefficients in an underlying Fourier-series
model are treated as random variables and the Sk are treated as expectations, cross-entropy minimiza-
tion leads to the estimate

Sk 1 M * (24)
- + 72 Pk COS (27Ttrfk)

k r=O
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JOHNSON AND SHORE

For the case of a flat prior estimate Pk= P, (24) follows from maximizing Zk log Sk. When the Sk are
treated as probabilities rather than expectations, cross-entropy minimization leads to the estimate

Sk = Pk exp[ ,20, cos (27Ttrfk) (25)

For the case of a flat prior estimate, (25) follows from maximizing -YkSk log Sk. Because the result
in this case arises from performing maximum entropy on a probability distribution defined by normaliz-
ing a power spectrum, we refer to it as maximum-entropy normalized spectral analysis (MENSA).**

The Lagrangian multipliers 1s, in (24) and fi in (25) are chosen in both cases so that the esti-
mates agree with the known autocorrelations

N
Rr = , 2 Sk cos (2nrt.fk), (26)

k=1

where r = 0, 1, ... , M Note that, given one of the spectral estimates SI through SN, substitution of
an arbitrary lag t for tr in (26) defines the corresponding extrapolation of the known autocorrelations.

Which of the two estimates (24) and (25) is better? In our opinion, if one has a good physical
model for some variable of interest, and if the model can be incorporated into the derivation of an esti-
mate for that variable, it makes sense to do so. Because such estimates can exploit more information
than estimates derived without an underlying model, estimates based on underlying models should be
better. Furthermore, although we recognize that normalizing the Sk and treating them as probabilities
is mathematically sound, we do not see any reasonable physical interpretation. What events have pro-
babilities proportional to Sk? This suggests that (24) is better. Also, since (24) yields all-pole models
in the important case of flat priors, since all-pole spectra result from passing a broadband signal through
a multilayered transmission medium, and since the human vocal tract is a multilayered transmission
medium, it follows that (24) should be appropriate for speech processing. On the other hand, argu-
ments for (25) also have merit, and it is clear that the best method of answering the question is empiri-
cal. This we attempt to do in the remainder of this report.

EXPERIMENTAL APPROACH

In this section we present basic definitions, discuss our experimental approach, and discuss vari-
ous computational issues. Our general approach is to process various speech signals in order to compare
measured power spectra and autocorrelations with MESA and MENSA estimates. We also synthesize
speech using both MESA and MENSA power-spectrum estimates and qualitatively compare the results.

Definitions and Notation

Let y' . YBl, Y2, , yj comprise L time-domain samples, equispaced at intervals of At, from
one "frame" of speech data. From y we compute estimated autocorrelations R -{RO, R, ... ,RL-

by means of
L-r

Rr LYiYi+r- (27)

This is a biased estimate, but it guarantees positive-definiteness. Let Q {Ql, Q2, QN) be the
power spectrum defined by the discrete Fourier transform of the measured autocorrelations. Defining
R_r= R_ we have

**This somewhat contrived acronym has the additional virtue of being the Latin word for table, which is the source of tlie Span-
ish word for table (mesa).

6
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L-I
Qk = I R, exp (-27ritrfk)

r=-L+l
L-1

= Ro + 2 2Rr cos (27r trfk). (28)
r=1

As the N discrete frequencies we take

fk = (k - 1/2) a1

That is, we divide the interval from zero to the Nyquist frequency into N subintervals and define fk as
the midpoint of each subinterval.

Let S (SI, S2 , ... , SN) be the power-spectrum estimate obtained from (24) using a flat prior
estimate and the first M + 1 autocorrelations R, from (27). S is the standard MESA or LPC estimate
of the power spectrum-its usual, continuous-frequency form is given by (4). Let
So _ {s5, SI, ... , Sk) be the MENSA power-spectrum estimate obtained from (25) using the same
flat prior estimate and the same M+I autocorrelations from (27). Finally, let A and A' be the extra-
polated autocorrelations for all L lags t, = rAt, r = 0, ... , L - 1, obtained from (26) using S and S*
respectively. Note that Ar and A; match the actual autocorrelations (27) for r = 0, ... , M For
r > M, however, Ar and A; are in general different from each other and from R,. For convenience, we
summarize the notation as follows:

y = a vector of L time-domain samples from one speech frame,

R = the measured autocorrelations for L lags computed from y,

Q = the "actual" power spectrum defined by a Fourier transform of R,

S = a MESA or LPC estimate of the power spectrum from first M + 1 lags of R,

SF = a MENSA estimate of the power spectrum from first M + 1 lags of R,

A = a MESA or LPC autocorrelation extrapolation based on S,

A' = a MENSA autocorrelation extrapolation based on S'.

For the work reported here, we used L = 180 and M = 8, 10, 25. When we refer to more than one
speech frame, we add a subscript to the foregoing definitions.

What and How to Compare

Much work in speech analysis and synthesis uses S to model the power spectrum. We are
interested in testing the hypothesis that using SF would lead to better results. To obtain information
that could help to confirm or refute the hypothesis, we did three things: (a) For a variety of representa-
tive speech frames we plotted A, A*, and R and we performed qualitative and quantitative compari-
sons. (b) For the same frames we plotted S, S', and Q and performed qualitative comparisons. (c) We
performed qualitative comparisons of speech synthesized two different ways: we used identical pitch and
voicing decisions and used either S or So for spectral shape.

What about quantitative comparisons? For some distortion measure d, one could compare
d(Q, S) with d(Q, S*), but what is the right choice for d? Clearly, one distortion measure could yield
d(Q,S) < d(Q,S*), while another could yield the reverse inequality. One reasonable choice is the
Itakura-Saito distortion djS [371, which is known to be useful in speech processing:

7



JOHNSON AND SHORE

dis(Q,S) N I Ilog QkJ

But in the notation of our background section the Itakura-Saito distortion dS (S , P) is just the asymp-
totic cross-entropy between q(x) and p(x); hence, derivations of MESA or LPC spectra by cross-
entropy minimization are equivalent to derivations by minimization of Itakura-Saito distortions
[38,25,10]. Not only does S minimize d1s(S,P) subject to the constraints, but S is the spectrum of
the form (15) that minimizes dis(QS) [37,39]. Use of the Itakura-Saito distortion might therefore
involve an intrinsic bias in favor of MESA. That is not to imply that djs(Q,S) is necessarily less than
dls(Q,S ). However, we wish to avoid relying entirely on a distortion measure that relates specially to
the mathematics of one or the other of the two estimates.

We therefore consider a distortion measure that bears a relation to MENSA analogous to that of
dss to MESA. We define the "cross-entropy distortion" dcE(QS) to be the cross-entropy of the proba-
bility distributions obtained by normalizing Q and S:

N

N Qk Q jQ
dCE(Q, S)= k N log Qk log j=N

k=1 I Q k S

j=1 j=l

Then S* minimizes dcE(S*,P) subject to constraints just as S minimizes d1s(S,P) subject to con-
straints. Moreover S' is one of the spectra of the form (22) that minimizes dcE(QS*) [29]. We use
dcE as well as dIs for quantitative comparisons; that is, we compare dcE(QS) with dcE(QS*)

We also use a third distortion measure, the gain-optimized Itakura-Saito distortion [391 defined by
dGo(Q,S) = min d1s(g Q,S), where g ranges over positive constant scale factors. This is closely

g
related to d1s but, like dCE, is insensitive to changes in the gains of the two spectra. It can be computed
from 1 I N Qk 1 N Qk

k= I k Nk=1l S

Numerical Issues and Procedures

The MENSA estimate S can be produced by an algorithm that determines minimum cross-
entropy probability distributions given arbitrary priors and arbitrary constraints. The mathematics
underlying a Newton-Raphson-based algorithm is discussed in Appendix A of Ref. 29, and an APL pro-
gram that implements this algorithm is described in detail in Ref. 40. For the work reported here, we
used a FORTRAN version of the APL program. The resulting S' may be thought of as a discrete-
frequency approximation to a continuous power spectrum, one that is defined by the maximization of
-J S(f) log S (f) df rather than - IkSk log Sk. The accuracy of the discrete-frequency approximation
will depend on the number of frequency points N. Although it would better to use an algorithm that
produced a continuous representation of the MENSA estimate, we do not have such an algorithm.

As for S, a variety of methods are available. Standard MESA or LPC methods can produce the
inverse-filter coefficients used in (4) or any of the equivalent sets of parameters such as reflection
coefficients. The result is a continuous representation of the spectral estimate that can then be
evaluated at the frequencies fk in order to yield S. No doubt this is more accurate than a method that
computes a discrete-frequency approximation, but to use it might introduce a misleading source of
differences between S and S'. To avoid such a problem, we chose to compute the S in a manner
analogous to the computation of S*. In particular we used a FORTRAN implementation of the
MCESA [25] algorithm described in Ref. 41. This algorithm uses the Newton-Raphson method to
compute (24) for arbitrary priors and autocorrelation constraints. For a flat prior, the result is just a

8
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discrete-frequency approximation to a continuous MESA or LPC spectrum. As checks on the discrete-
frequency computations of S* and S, we obtained results for various values of the number of fre-
quency points N, and we compared the results for S with continuous frequency results obtained using
Levinson recursion.

In considering how to obtain synthetic speech using the two different spectral shapes, we decided
to take advantage of commonly available, LPC-based programs. This approach, which is ideal for
MESA spectra, involves exciting an all-pole filter with either white noise, for unvoiced sounds, or a
periodic pulse train, for voiced sounds. For MENSA spectra, which do not have the all-pole form, we
had to proceed indirectly. Our procedure was as follows: First we analyzed the test sentence for pitch
and voicing using a modified cepstral technique described in Ref. 42 and implemented in Version 4.0 of
the Interactive Laboratory System (ILS) from Signal Technology, Inc. The results were used for both
syntheses. For the synthesis based on S' we used a 29th-order all-pole approximation to the power
spectrum S' in each frame. This approximation was computed by taking the first 29 lags of the auto-
correlation extrapolation A' and using Levinson recursion to yield a set of reflection coefficients. As
checks we plotted the resulting approximate power spectrum and compared it with A . For the syn-
thesis based on S we followed the same procedure-we ran Levinson recursion on the first 29 lags of
A. Had we been dealing with exact, continuous spectra, the resulting "approximate" spectrum would be
exactly equal to S, so it would have been reasonable to bypass this step. We included it, however, to
keep the comparison as fair as possible. As a check we also synthesized speech using spectral shapes
obtained directly from Levinson recursion on the first M + 1 lags of the measured autocorrelations R.
Note that the 29th-order all-pole synthesis spectra are 29th-order approximations to S and S* and not
29th-order approximations to Q.

EXPERIMENTAL RESULTS

We obtained results for the sentence " The meeting begins at four p.m." The sentence was spoken by
a male, passed through an antialiasing filter, digitized at 8000 samples per second, and divided into 100
frames of 180 samples each. Using 256 discrete frequencies (N= 256), we computed Rj, Qj, S , A;,
Sj, and Aj, j = 1, ... , 100, as discussed in the preceding section. We also did computations for
some cases with N = 64 and N = 128. In general there were no essential differences between results
for N = 64 or 128 and N = 256. It is a frequent practice to preprocess speech samples before the auto-
correlations are estimated-the yj in (27) are the result of preemphasizing or windowing the speech
samples. We therefore repeated the computations using Hamming windowing alone, 90% preemphasis
alone, and both together. In the following we focus attention on two frames: frame 56, which contains
a portion of the phoneme Ifl, and frame 39, which contains a portion of the phoneme /I/. For con-
venience we refer to these frames by means of the subscripts f and I respectively. Unless windowing or
preemphasis is explicitly mentioned, the reference is to the spectra computed without preprocessing.

Comparison of Autocorrelation Extrapolations

In Fig. 1 we plot Rf, A;, and Af for N = 256. When we plotted the continuous autocorrelation
function obtained by Levinson recursion, it was indistinguishable from Af, which implies that the
discrete frequency approximations are accurate. Beyond the constraint limit of lag 10, the extrapolations
A ; and A f differ from each other as well as from R. One would be hard pressed to argue that either
one is a "better" extrapolation. The same conclusion follows from Fig. 2, in which we plot analogous
results from the frame containing a portion of the phoneme /I/.

Comparison of Power Spectra

Turning to the power spectra, we plot S , Sf, S;, and SI in Figs. 3 through 6 for M = 10. The
spectra S; and Sf are quite similar; S and SI are quite different. In particular, S ; has deep nulls that

9
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97 autocorrelations. Frame 56. (M = 10. HM = N. PR = 0, 256 freqs.)

LAG Is)

Fig. I - Autocorrelations from speech samples and from MESA and

MENSA spectral estimates (/5/)

97 autocorrelations. Frame 39. (M a 10, HM = N. PR = 0, 256 freqs.)

0 0.0015 0.003 0.0045 0.006 0.0075 0.009 0.0105 0.012
LAG Cs)

Fig. 2 - Autocorrelations from speech samples and from MESA and
MENSA spectral estimates (/1/)
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S'f & order-29 LPC approx. Frame 56. (M = 10, HM = N. PR = 0, 256 freqs.)

1 x.10 7
II i I I I

1 x( io6__

1 x 105

1 x10<g1 x103 5

1 x 102 S-p LPC approx.

1 X o1 . \

t o1-1 I I I 
0 0.5 1 1.5 2 2.5 3 3.5 4

FREQ (kHz)

Fig. 3- MENSA spectrum and the 29th-order continuous
MESA approximation (If!)

Sf & order-29 LPC approx. Frame 56. (M = 10, HM = N, PR = 0, 256 freqs.)

1 x 107 1 1 1 1 1 1 I

1X106

1 x 105

1 x 104

1 x 1o3_ LU D 3
1 X1

1 X102 _ 
Sp. LPC approx.

1x101

1 x 10 1 I I
0 0.5 1 1.5 2 2.5 3 3.5 4

FREQ (kHz)

Fig. 4 -Discrete MESA spectrum and the 29th-order continuous
MESA approximation (If/)
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S1l & order-29 LPC approx. Frame 39. (M = 10. HM = N, PR = 0, 256 freqs.)

0.5 1 1.5 2 2.5 3

FREQ (kHz)

g. 5 - MENSA spectrum and the 29th-order continuous
MESA approximation (III)

3.5

I& order-29 LPC approx. Frame 39. (M = 10. HM = N. PR = 0, 256 freqs.)

0 0.5 1 1.5 2 2.5 3 3.5 4

FREQ (kHz)

Fig. 6 - Discrete MESA spectrum and the 29th-order continuous
MESA approximation (III)
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are characteristic of the MENSA estimates for the entire test sentence. Indeed Fig. 7 shows the super-
imposed results of S for all 100 frames (N = 256). The frequent occurrence of five lobes is obvious.
No such structure occurs for S (Fig. 8). The lobe structure appears to be related to the number of con-
straints: There are five lobes in Fig. 7, which is half the analysis order (M = 10). We repeated the
computation of A' using M = 25 and M = 8. The resulting plots were similar to Fig. 7 except that
about 12 and four lobes were apparent respectively. Neither preemphasis nor windowing was entirely
effective in eliminating the deep minima from the MENSA spectra. The superposed plots continued to
show a lobed structure, though more complex and less regular than the consistent five-lobe pattern of
Fig. 7. The results of using both Hamming windowing and 90% preemphasis are shown in Fig. 9. The
lobes at 400 Hz, 1200 Hz, and 3600 Hz are still apparent, but the pattern is blurred between 2000 Hz
and 3800 Hz.

S' spectra. 100 frames. (M = 10. HM = N. PR = 0. 256 freqs.)

1 x 107

1 X 106

1 x 105

1 x 104

-J

1 X 10
2

'

1 x 101

1

1 X 1O 1

0 0.5 1 1.5 ! 2 2.5 3

FREQ (kHz)

Fig. 7 - MENSA spectra-100 frames overlaid

4

S spectra. 100 frames. (M = 10. HM = N, PR = 0, 256 freqs.)

1 X 107

1 x 106

1 X 105

1 X 104

1 ,X 103

1 x I

1 x

1 X 11

101 . .

AL ,~ FREQk'z

0 0.5 1 1.5 2 2.5 3 3.5 4

FREQ (kHz)

Fig. 8 - MESA spectra-100 frames overlaid
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MCP spectra. 100 frames. IM = 10, HM = N. PR = 0. 256 freqs.)

1 x 10 1

0 0.5 1 1.5 2 2.5 3 3.5

FREQ (kHz)

Fig. 9 - MENSA spectra from windowed, preemphasized speech-
100 frames overlaid

In Fig. 10 we compare the "actual" power spectrum Qf with S. and Sf. Both estimates appear to
be smoothed versions of Qf. Figure 11 shows the analogous comparison for /I/. Here there is more
of a difference. Because of the deep minima of S5, it appears more reasonable to interpret SI than S5
as a smoothed version of Q I.

Three distortion measures for the MESA and MENSA spectra S and S as estimates of Q were
computed for each frame: d 15(QS) and dl5(QS*), dGo(QS) and dGo(QS*), and dcE(QS) and
dcE(Q,S ). The computations were done for three values of M. The results, averaged over all 100
frames, are shown in Table 1. In one case the mean distortion for MENSA is slightly less than that for
MESA, the difference being in the third decimal place. In every other case the mean distortion for
MESA is less. This is true even for the "cross-entropy" distortions dCE, which might have been
expected to favor MENSA.

FT sp. & posteriors. Frame 56. (M = 10, HM = N. PR = 0. 256 freqs.)

6x

1 x

1 X 101
<U

X 10 1

1 x 10-2 L
0 0.5 1 1.5 2 2.5 3 3.5 4

FREQ (kHz)

Fig. 10 - MESA and MENSA estimates with the Fourier transform of the
measured autocorrelations (Uf!)
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FT sp. & posteriors. Frame 39. (M = 10, HM = N. PR = 0, 256 freqs.)

0 0.5 1 1.5 2 2.5 3 3.5 4

FREQ (kHz)

Fig. 11 - MESA and MENSA estimates with the Fourier transform of the
measured autocorrelations (/II)

Table 1 - Distortion Results

Itakura-Saito Gain-Optimized Cross-Entropy
Distortion d,5 Itakura-Saito Distortion dcE

Distortion dGo_

M Preemphasis Window MESA MENSA MESA MENSA MESA MENSA
8 0 None 0.320 1.6 x 1020 0.320 9.970 0.361 0.570

10 0 None 0.275 3.7 x 1019 0.275 10.549 0.307 0.495
25 0 None 0.204 5.6 x 1018 0.204 4.352 0.185 0.290

8 90% Hamming 0.589 6.1 x 1018 0.589 12.340 0.343 0.507
10 90% Hamming 0.502 3.3 x 1018 0.502 11.025 0.292 0.429
25 90% Hamming 0.310 2.5 x 1017 0.310 4.776 0.167 0.162

8 90% None 0.434 6.5 x 1015 0.434 5.520 0.426 0.596
10 90% None 0.379 1.1 x 1019 0.379 5.019 0.359 0.521
25 90% None 0.265 1.1 x 102 0.265 1.032 0.194 0.262

8 0 Hamming 0.553 1.6 x 1020 0.553 15.265 0.354 0.374
10 0 Hamming 0.446 8.7 x 1019 0.446 16.347 0.243 0.321
25 0 Hamming . 0.290 4.2 x 1019 . 0.290 13.203 0.134 0.164

The dCE results certainly do not favor MESA as overwhelmingly as those from the other two dis-
tortion measures-especially d15. The enormous Itakura-Saito distortions of the MENSA spectra are
the result of the deep minima of the MENSA estimates. The expression for d15(Q, S ) contains the
term Qk/S;, which becomes extremely large when the estimate Sk is nearly zero. The other two distor-
tion measures contain such a term only logarithmically. Thus d15 penalizes underestimates more
severely than do dGo and dcE.
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Two columns of the table are identical: it appears that djs(Q, S) = dGO(Q, S). This is not a
coincidence but is a property of di5 and dGo. The equality can be shown to hold provided that bS is a
MESA spectrum and that bQ is a spectrum that satisfies the same autocorrelation constraints that deter-
mine bS. A proof can be based on the "correlation matching" property [39,29] of MESA spectra.

Comparison of Synthetic Speech

Although results such as in Figs. 7 and 11 suggest that S is better than S, the separation is
hardly compelling. This is a case where the proof must be in the hearing. Consequently we syn-
thesized the entire test sentence using standard LPC methods and using the 29th-order LPC approxima-
tions to Sj and Sp, j = 1, ... , 100, as discussed at the end of the preceding main section. The 29th-
order LPC approximations to S,, Sf, S, and SI are also plotted in Figs. 3 through 6. The two curves
are indistinguishable in Figs. 3, 4, and 6; the only discrepancy is for SI (Fig. 5). In that case the 29th-
order approximation is unable to match the deep nulls and also exhibits some peak splitting.

The LPC speech and the speech based on S sounded identical, adding further confidence to the
discrete frequency approximations. The two versions based on S and S' sounded different, but-
somewhat to our surprise-we and others judged them to be equally intelligible. There was, however, a
distinct qualitative difference when preemphasis was not used. The speech based on S* was qualita-
tively inferior-it had a distinct ringing quality, as though spoken from the other end of a long, wide
pipe. When preemphasis was used, alone or with Hamming windowing, the ringing quality was greatly
reduced or effectively eliminated. Hamming windowing alone reduced the ringing only slightly. We
hypothesize that this ringing effect is a reflection of the characteristic lobe structure and deep minima of
the spectral estimates S%, since the ringing is most prominent when the lobing is most prominent and
regular. However, the ringing can be almost imperceptible while lobing is still plainly visible in spectral
plots.

CONCLUSION

Primarily on the basis of the results of speech synthesis, but also on results like Fig. 7, Fig. 11,
and Table 1, we believe that MESA (S) yields better power spectrum estimates for speech processing
than does MENSA (S*). This empirical conclusion also supports the theoretical discussion in the last
paragraph of the background section.
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